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• Cost, sustainability, and supply 

chain issues will be the single 

dominant issue as we move forward

Battery Performance Parameters
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Challenges with supply chain and sustainability 

• Commercialization of lithium-ion batteries began in 1991 with LiCoO2 and graphite

- Cobalt is expensive; both cobalt and graphite have supply chain problems

- Cobalt is mined in DRC in Central Africa, political tensions, child labor, air pollution

• The trend since then is to reduce cobalt by increasing nickel: LiNi1-x-yMnxCoyO2 (NMC)

- NMC622 (60% Ni and 20% Co) is commercial

- High-nickel leads to cycle, thermal, and air instabilities

- Nickel cost is lower than cobalt, but not a whole lot

• Cobalt is a problem today

• Nickel is a problem tomorrow

• Lithium could become a problem day-after-tomorrow

• What do we do? 

- Focus on sustainable battery technologies progressively 

- Can batteries be free from mined metals?
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Cost Considerations

W. Li, E. M. Erickson, and A. Manthiram, Nature Energy 5, 26 (2020)
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Vision: A Path to Sustainable Battery Technologies

• Cobalt-free cells: high-nickel cells

• Cobalt- and nickel-free cells: lithium-sulfur cells

• Mined-metal-free cells: sodium-sulfur
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Low-cobalt or Cobalt-free, High-nickel Cathodes 

50 μm

5 μm 

• 10 kg per batch of hydroxide precursor with any Ni 

content (0 – 100%)

• Incorporation of hard-to-dope ions like Al, Mg, etc. during 

coprecipitation

• XPS, TOF-SIMS, SEM, TEM, NMR, ….. synchrotron
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A Low-cobalt Cathode LiNi0.94Co0.06O2: Surface Stabilization with H3PO4
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• Phosphoric acid treatment leads to ~ 10 nm Li3PO4 layer on P-LiNi0.94Co0.06O2 (PNC) 

• Much thicker rock salt layer (~ 15 nm) on NC than on PNC (~ 3 nm) after 1,000 cycles
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Q. Xie and A. Manthiram, Chemistry of Materials 37, 7413 (2020)
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A Cobalt-free Cathode: LiNi0.9Mn0.05Al0.05O2 (NMA-900505)
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W. Li, S. Lee, and A. Manthiram, Advanced Materials 2002718 (2020)
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Domestic Production of Cobalt-free Cathodes 

• TexPower EV Technologies is a startup out of UT Austin, located in Houston

- Has licensed an issued cobalt-free cathode patent from UT Austin 

- U.S. Patent Number: 11,233,239 

- Is in the process of setting up a pilot plant 

- Planning to produce 150 tons of cobalt-free cathodes per year for domestic supply
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Cobalt- and graphite-free Cells: LiNiO2 with Lithium-metal Anode

• LP57: 1 M LiPF6 in EC/EMC (3/7, g/g)

• LHCE (LiFSI) or M47: LiFSI : DME : TTE = 1 : 1.2 : 3 by mol
• LSE (LiPF6): LiPF6 : EC : EMC : TTE = 1 : 1.2 : 2.4 : 4.4 by mol

• LiPF6-based LSE offers better cycle life and high-voltage stability than LP57 and LHCE 

0.05 mV s-1

L. Su, E. Jo, and A. Manthiram, ACS Energy Letters 7, 2165 (2022)

Role of electrolyte
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Lithium-sulfur Batteries: Prospects and Challenges

S.-H. Chung and A. Manthiram, Advanced Materials 31, 1901125 (2019)

A. Manthiram, S.-H. Chung, & C. Zu, Advanced Materials 27, 1980-2006 (2015)

A. Manthiram, Y.-Z. Fu, S.-H. Chung, C. Zu, & Y.-S. Su, Chemical Reviews 114, 11751 (2014)

A. Manthiram, Y.-Z. Fu, & Y.-S. Su, Accounts of Chemical Research 46, 1125 (2013)

2-electron transfer; 1,672 Ah/kg;  2,500 Wh/kg; abundant, environ. benign

Poor electronic/ionic conductivity Low utilization, low capacity

Polysulfide shuttle Poor cyclability, self discharge

Lithium-metal anode degradation Poor cycle life, safety concerns
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J. He, A. Bhargav, and A. Manthiram, ACS Energy Letters

7, 583 (2022)

Dense Lithium-sulfur Cells with Electrocatalyst and Controlled Cell Parameters
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Sodium-sulfur Batteries: a Dream Technology

• Currently used electrolytes suffer from sodium polysulfide shuttling and severe Na-metal anode instability

• In-situ observation of Na||Na symmetric cells show rapid dendrite formation and severe gassing

• Localized high-concentration electrolyte (LHCE) shows uniform Na-metal stripping/plating and prevents 

dendrites. LHCE contains NaFSI, DME and TTE (1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether)

1 mA cm-2 / 1 mAh cm-2

J. He, A. Bhargav, W. Shin, and A. Manthiram, Journal of the American Chemical Society 143, 20241 (2021)
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Altering the Reaction Pathway in Sodium-sulfur Cells

• NaFSI salt employed in the LHCE interacts with the 

NaPS generated during first cycle to form a cathode 

SEI containing S-F species and NaF

• In-situ XRD shows that this reaction changes Na-S 

chemistry from dissolution-precipitation reaction into a 

quasi-solid-state reaction 

• LHCE enables stable cycling of Na-S batteries over 

300 cycles without any advanced cathode design

J. He, A. Bhargav, W. Shin, and A. Manthiram, Journal of the American Chemical Society 143, 20241 (2021)
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Conclusion: A Path Forward to Sustainable Battery Technologies

Near-term

• Elimination of cobalt altogether

Mid-term

• Elimination of nickel

Long term

• Elimination of lithium

• Elimination of mined metals 
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