Battery Chemistries for Relieving Supply Chain Issues of Today, Tomorrow, and Day-after-tomorrow

Arumugam Manthiram Director, Texas Materials Institute Walker Department of Mechanical Engineering McKetta Department of Chemical Engineering The University of Texas at Austin

Battery Performance Parameters

 Cost, sustainability, and supply chain issues will be the single dominant issue as we move forward

Challenges with supply chain and sustainability

- Commercialization of lithium-ion batteries began in 1991 with LiCoO₂ and graphite
 - Cobalt is expensive; both cobalt and graphite have supply chain problems
 - Cobalt is mined in DRC in Central Africa, political tensions, child labor, air pollution
- The trend since then is to reduce cobalt by increasing nickel: LiNi_{1-x-y}Mn_xCo_yO₂ (NMC)
 - NMC622 (60% Ni and 20% Co) is commercial
 - High-nickel leads to cycle, thermal, and air instabilities
 - Nickel cost is lower than cobalt, but not a whole lot
- Cobalt is a problem today
- Nickel is a problem tomorrow
- Lithium could become a problem day-after-tomorrow
- What do we do?
 - Focus on sustainable battery technologies progressively
 - Can batteries be free from mined metals?

Cost Considerations

W. Li, E. M. Erickson, and A. Manthiram, *Nature Energy* 5, 26 (2020)

Vision: A Path to Sustainable Battery Technologies

Mined-metal-free cells: sodium-sulfur

Low-cobalt or Cobalt-free, High-nickel Cathodes

• XPS, TOF-SIMS, SEM, TEM, NMR, synchrotron

High

Intensity

Low

A Low-cobalt Cathode LiNi_{0.94}Co_{0.06}O₂: Surface Stabilization with H₃PO₄

Phosphoric acid treatment leads to ~ 10 nm Li₃PO₄ layer on P-LiNi_{0.94}Co_{0.06}O₂ (PNC)

• Much thicker rock salt layer (~ 15 nm) on NC than on PNC (~ 3 nm) after 1,000 cycles

Q. Xie and A. Manthiram, Chemistry of Materials 37, 7413 (2020)

A Cobalt-free Cathode: LiNi_{0.9}Mn_{0.05}Al_{0.05}O₂ (NMA-900505)

ERSITY OF TEXAS AT AUSTIN 8

- TexPower EV Technologies is a startup out of UT Austin, located in Houston
 - Has licensed an issued cobalt-free cathode patent from UT Austin
 - U.S. Patent Number: 11,233,239
 - Is in the process of setting up a pilot plant
 - Planning to produce 150 tons of cobalt-free cathodes per year for domestic supply

Cobalt- and graphite-free Cells: LiNiO₂ with Lithium-metal Anode

- LP57: 1 M LiPF₆ in EC/EMC (3/7, g/g)
- LHCE (LiFSI) or M47: LiFSI : DME : TTE = 1 : 1.2 : 3 by mol
- LSE (LiPF₆): LiPF₆: EC : EMC : TTE = 1 : 1.2 : 2.4 : 4.4 by mol

• LiPF₆-based LSE offers better cycle life and high-voltage stability than LP57 and LHCE

L. Su, E. Jo, and A. Manthiram, ACS Energy Letters 7, 2165 (2022)

Lithium-sulfur Batteries: Prospects and Challenges

2-electron transfer; 1,672 Ah/kg; 2,500 Wh/kg; abundant, environ. benign

Poor electronic/ionic conductivity	Low utilization, low capacity
Polysulfide shuttle	Poor cyclability, self discharge
Lithium-metal anode degradation	Poor cycle life, safety concerns

- S.-H. Chung and A. Manthiram, Advanced Materials **31**, 1901125 (2019)
- A. Manthiram, S.-H. Chung, & C. Zu, Advanced Materials 27, 1980-2006 (2015)

A. Manthiram, Y.-Z. Fu, S.-H. Chung, C. Zu, & Y.-S. Su, Chemical Reviews 114, 11751 (2014)

A. Manthiram, Y.-Z. Fu, & Y.-S. Su, Accounts of Chemical Research 46, 1125 (2013)

Dense Lithium-sulfur Cells with Electrocatalyst and Controlled Cell Parameters

Sodium-sulfur Batteries: a Dream Technology

• Currently used electrolytes suffer from sodium polysulfide shuttling and severe Na-metal anode instability

- In-situ observation of Na||Na symmetric cells show rapid dendrite formation and severe gassing
- Localized high-concentration electrolyte (LHCE) shows uniform Na-metal stripping/plating and prevents dendrites. LHCE contains NaFSI, DME and TTE (1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether)

J. He, A. Bhargav, W. Shin, and A. Manthiram, Journal of the American Chemical Society 143, 20241 (2021)

Altering the Reaction Pathway in Sodium-sulfur Cells

- NaFSI salt employed in the LHCE interacts with the NaPS generated during first cycle to form a cathode SEI containing S-F species and NaF
- In-situ XRD shows that this reaction changes Na-S chemistry from dissolution-precipitation reaction into a quasi-solid-state reaction
- LHCE enables stable cycling of Na-S batteries over 300 cycles without any advanced cathode design

J. He, A. Bhargav, W. Shin, and A. Manthiram, Journal of the American Chemical Society 143, 20241 (2021)

Near-term

• Elimination of cobalt altogether

Mid-term

• Elimination of nickel

Long term

- Elimination of lithium
- Elimination of mined metals

Acknowledgements

