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Battery Aging Due to Fast Charge

Kim et al., Energy Storage Materials (2022)

Chinnam et. al ACS Applied Energy Materials 

(2021)

• Li plating is typically only partially reversible

• Results in electrically isolated Li – Eventual loss of capacity and performance



AGING AT THE POSITIVE ELECTRODE 
NMC532 and 811 post-test: Aging mechanisms

• Interprimary particle separation (IPPS or cracking) with distinct 
evolution. 

• NMC811 better at retaining performance  enhanced electronic 
conductivity

• Bulk structure remained layered. More surface reconstruction at higher 
C-rates.

Post-tests were performed at Argonne

Tanim et. al. Energy Storage Materials (2021)

Tanim et al. Adv. Energy Materials (2022)



Use understanding of cell design to develop protocols and rapid understanding of 

failure modes



Increasing Cell Energy

• Electrode loading increased by 50% (from 2 to 
3 mAh/cm2)

• Max current decreased but overall protocol 
structure maintained

Moderate loading

Low loading

Chinnam et al, ACS Appl. Energy Mat., (2021)



Advancing charge acceptance during 
short duration charging

• Reduced time during CV portion of the charge

• Same negative electrode loading

• Able to increase charge acceptance 10+%

• Key changes – Charge protocol, 
electrolyte, cathode material (NMC811 vs 
NMC532)

Tanim et al, Cell Reports Phys. Sci, 2020, 100114

Chinnam et al, ACS Appl. Energy Mat., 2021, 9133

15 min



Advanced Charge profiles

Charge protocols – Can be readily tailored to specific builds with early characterization
• Voltage Ramp – Goal to minimize Li plating by maintaining negative electrode potential above 0V vs Li

• Material Stress Reduction (MSR) – Reduced stress on materials by ramp to higher current. Current determined 

based on cell overvoltage and impedance characteristics

• Protocols developed to minimize plating and align with infrastructure design

Voltage Ramp Material Stress Reduction

Kim et al, Energy Technology, 2022, 2200303



INL’s approach: aging features + data-driven
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• Capacity

• Voltage 

• Current 

• Power 

• Resistance 

• Coulombic Efficiency 

• Incremental capacity (IC) curves

• …and many more collected at 

cycle-by- cycle or RPT

Electro-chemical (EC) signatures are 

battery properties or performances collected 

along cell cycling throughout lifetime  - Use 

of both experimental and synthetic data

Aging 

phenomena 
EC signature 

responses

“rules” for determining 

what aging happening

EC signatures 

Chen et al, Cell Reports Phys Sci, 2021, 100352



Test procedures and electrochemical signatures

Beginning of life test

RPT 0 (@ C/20)

Cycle life (450 Cycles)
Run specific

charging 

protocols

RPT N (@ C/20)

RPT: every 25 – 100 cycles
N = 1 - 11

End of test

600+ life cycles

Reference performance 

test (RPT): 

check points of cell 

performance
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Lots of battery data are needed to cover aging cases 

1111

To identify other aging modes and complex pathways: 

• Extensive amounts of different aging cases are needed 

• Difficult to experimentally cover all cases 

• “Simulated battery” → user control what type and how 

much aging present and generate “synthetic data”

SOCcell (%)
0 40 80 120

Electrode or 
Cell Voltage (V)

0

1

2

3

4

Full cell

Cathode 

Anode

Incremental 
Capacity [%Ah/V]

-400

-300

-200

-100

0
3.2 3.4 3.6 3.8 4

Cell Voltage [V]

SOCcell (%)
0 40 80 120

Electrode or 
Cell Voltage (V)

0

1

2

3

4

Simulated battery

From half coin-cell data

Potential curves

respond to aging by 

shifting horizontally

Corresponding IC curves

+ %LAM

+ % LLI
dQ/dV

incremental capacity

Aged

BOL

Cathode (BOL) 

Anode (BOL) 
Anode (aged) 

Full cell (BOL) 

Full cell (aged) 

Dubarry, Liaw et al., Journal of Power Sources (2012)

Electrode potential curves shifts due to aging, then IC curves are obtained



Deep learning advances the aging detection framework 

1212

Simulated IC curves

Given %LLI & %LAM

Deep learning

pattern analysis

Computer-recognizable features 

For aging classification

Experimental 

Data 

% LLI

% LAMPE

% LAMNE

Aging pathway 

along lifetime 

• Strategies coping 

with aging 

• Insights designing 

better batteries 

Application: 

Aging detection 

framework construction:

Aging detection 

framework

Kim et al, Energy Storage Materials (2022)



Testing on Experimental Data - Classification

A 2D visualization map using t- SNE for both synthetic data sets and DL-classified experimental data, with two loading cases: 

(a) low-loading and (b) moderate-loading under two dominant aging modes—i.e., LLI + LAMPE and LLI + LAMNE. 

Experimental IC Data 

at early RPT cycles

Dominant Aging Mode 

Classification
Preprocessing

13 Kim et al, Energy Storage Materials (2022)



Validation of Aging Constituents

DL framework successfully validated with experimental data

Kim et al Energy Storage Materials (2021) 

https://doi.org/10.1016/j.ensm.2021.07.016 



Applied to most recent results

Rapid Ability to Transfer Learning from 

NMC532 to 811

• Like earlier work can readily classify and 

quantify extent of degradation modes

• Looked at LLI and LAM (not shown)

• Close alignment in use of synthetic data 

which can be readily transitioned across 

chemistries and cell design types

• Still working to understand ability to classify 

variations in cell design

• Only a few instances of Li plating detected 

using decision tree analysis



Summary

• Ability to achieve 90+% charge acceptance possible due to use of advanced 
protocols and electrolytes

• Use of ML methods developed to identify Li plating and classify and quantify 
degradation modes

− Use of synthetic data enables direct flexibility in expanding methods beyond 
use of  experimental data

• Failure modes can be used for future development of protocols
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