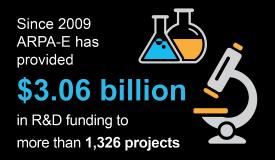
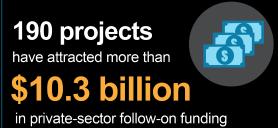


EV Charging in 5-15 minutes A Review of the EVs4ALL Program

Dr. Halle Cheeseman – ARPA-E CREB - December 9, 2022

Summary – Electric Vehicles for American Low Carbon Living


- ARPA-E Transformational, High-Risk Technologies
- Fast charging is key to solving range anxiety
- EVs4ALL Fast charging & better Winter performance
- **✓** EVs4ALL an opportunity to court new chemistries
 - E.g., Mg/Organic batteries & batteries from Trees!
- ✓ We must de-risk beyond LIB Chemistries upfront
- Battery Development is a long, hard road.



ARPA-E Leadership Mission:

Energy Efficiency, Energy Independence & GHG emissions reductionand Nuclear Waste reduction & Grid Resilience

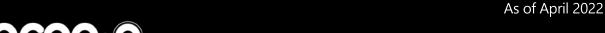
If it Works will it Matter?

have partnered with other government agencies

CHANGING WHAT'S POSSIBLE

for further development

5,714peer-reviewed journal articles from ARPA-E projects



896
patents
issued by
U.S. Patent and
Trademark Office

288
licenses
reported from
ARPA-E projects

ARPA-E-has funded battery projects for 28 active companies

ARPA-E Programs Represented:

BEEST

DAYS

GRIDS

IDEAS

IONICS

OPEN 2009

OPEN 2012

OPEN 2015

OPEN 2018

RANGE

SCALEUP

TINA - SEED

Let's Play a car game – who gets to DC first

Orlando, FL Departing @ 6.00am

Range

Charge Time

Battery Energy

Vehicle Cost

200 miles

15 mins

67kWh

\$30,000

400 miles

60 mins

133kWh

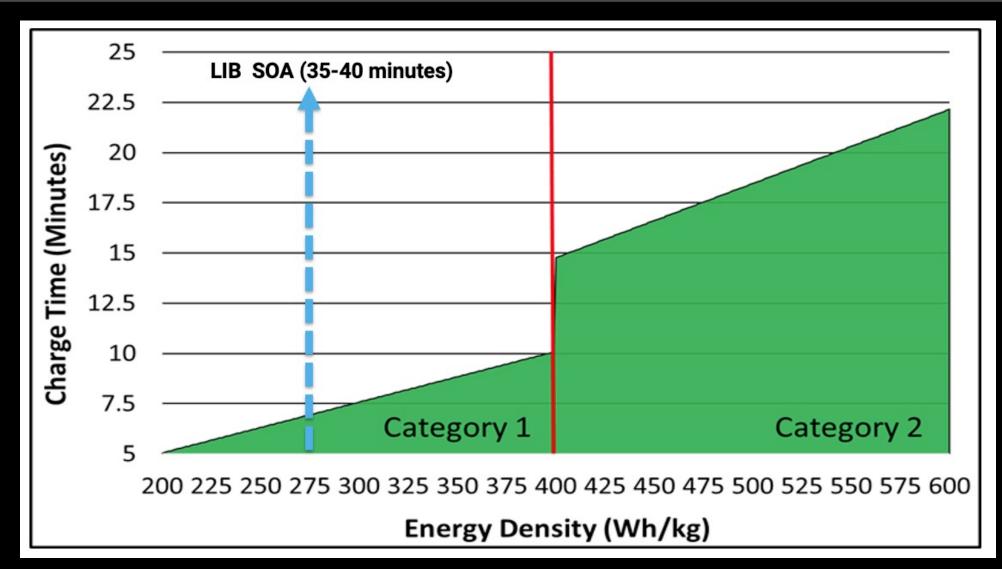
\$40,000

EVs4ALL ARPA-E Program – eliminating detractors

i) Very Fast Charging for the 37% of Americans who will not have access to home charging

Small Vehicles >200Wh/kg 5 minute charging

Large Vehicles >400Wh/kg 15 minute Charging ii) Improved low temperature performance for the Americans who live in Northern States



Cut low temperature battery performance losses in half

- iii) Better Affordability for New Vehicles with Abundant Materials & Range Retention for Used Vehicles.
 - <\$75/kWh versus SOA \$120/kWh
 - **Cut battery degradation losses in half**

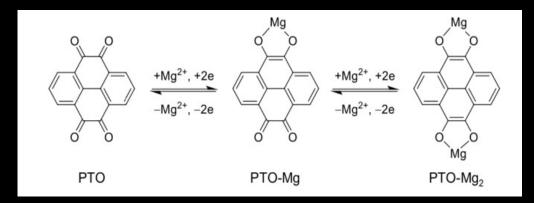
EVs4ALL Categories 1 and 2 – Summary

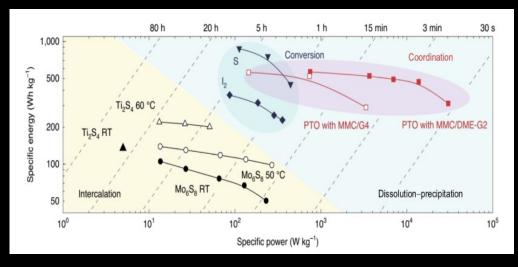
EVs4ALL: Technical Performance Targets (Categories 1 and 2)

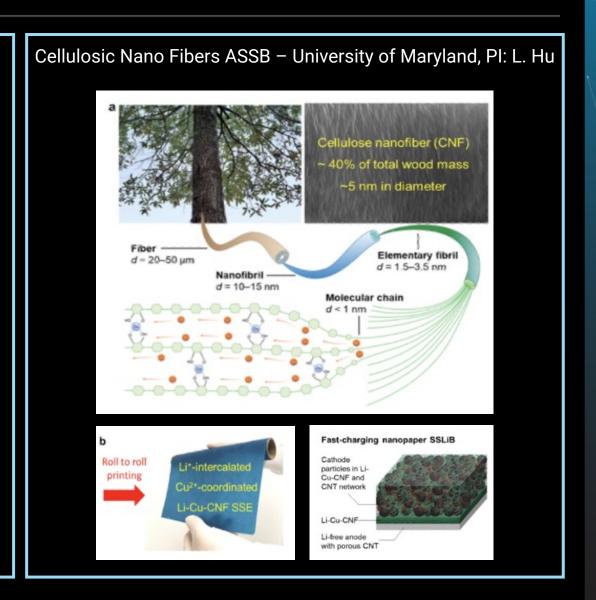
Table. Primary cell performance metrics for the EVs4ALL program (Categories 1 and 2).

Table. Primary cell performance metrics for the EVs4ALL program (Categories 1 and 2).

	Cell-Level Performance Metrics*	Category 1 (High Power)	Category 2 (High Energy)
1	Gravimetric Energy Density (Wh/kg)	≥ 200	≥ 400
2	Volumetric Energy Density (Wh/L)	≥ 500	≥ 900
3	Charge Power/Acceptance (kW/kg)	≥ 1.9	≥ 1.3
4	(%) Performance Loss per °C [≤ 30° C to -20° C]	≤ 0.3	≤ 0.4
5	Cycle Life – 90% of initial capacity (80% SOC swing)	≥ 1500	≥ 750
6	Cell Cost Target (\$/kWh)	≤ 60	≤ 60


EVs4ALL Technical Categories of Interest (Categories 1 and 2)


- Cylindrical, Pouch or Prismatic cells Cells 2.0V 5.5V
- Anode materials based on alkali or alkaline earth metals
- Oxide-based anodes
- Three-dimensional anode architectures
- Coatings on separators, cathodes and/or anodes
- No/low cobalt and no/low nickel-content cathodes
- Electrolyte agnostic. Safety is the overriding requirement
- New battery technologies that can be manufactured using existing processes



Examples of Beyond LIB Technologies – ARPA-E OPEN 2021 Awards

Magnesium – Organic Cathode, University of Houston. Pl: Yan Yao

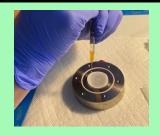
An ARPA-E Project is a beginning & batteries take a long time

Design Scale-up



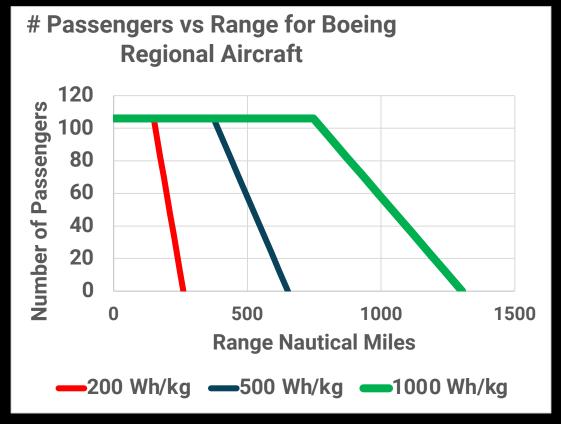
Stack pressure, Safety, Degradation, gassing, poisoning, flammability, swelling, balancing, corrosion, sealing.......

Material Scale-Up



Purity, packing, settling, separation, clumping, grain structure, dusting, sticking, contamination, moisture.......

Process Scale-Up



Storage, blending, consolidating, drying, curing, ageing, welding, inserting, folding. Filling, closing...

Battery 1K (1000Wh/Kg) - Transformational for Transportation

Metals as Fuels/Anodes

Lithium 11.1kWh/Kg

Aluminum 8.4kWh/Kg

Magnesium 6.1kWh/Kg

 $Li_2O = 5.2kWh/Kg$.

 $Al_2O_3 = 4.3kWh/Kg$

MgO = 2.8kWh/Kg

19% Required for 1K 23% Required for 1K 36% Required for 1K

How do we package these metals to deliver 1000Wh/Kg - Battery 1K

EVs4ALL – Solving for key EV purchase detractors

Thank You for Listening

