TCG-V: Power Systems Technology

“The Future of Munitions Batteries”
Workshop
Army Research Laboratory (ARL)
7 December 2016

Anthony Pergolizzi (ARDEC) -- TCG-V Chair
anthony.j.pergolizzi.civ@mail.mil, 973-724-2361
TCG-V Mission, Vision & Goals

- **Mission:**
 - Foster S&T Investments In Munition Power Sources

- **Vision:**
 - Develop the Next Generation of Power Sources
 - Develop Computational Models To Predict Performance Of Power Sources

- **Goals**
TCG-V Projects

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Lab</th>
<th>Potential/Planned Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Battery Performance</td>
<td>Sandia</td>
<td>DoD Laboratories, Thermal Battery Industrial Base, DoD Prime</td>
</tr>
<tr>
<td>Models</td>
<td></td>
<td>Contractors</td>
</tr>
<tr>
<td>Thin Film Thermal Battery</td>
<td>Sandia</td>
<td>Thermal Battery Industrial Base, DoD Prime Contractors, DoD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratories</td>
</tr>
</tbody>
</table>

DISTRIBUTION A: Approved for Public Release. Distribution is unlimited.
TCG-V Impact

• TCG-V Modeling Provides Significant Cost Savings
 – Thermal Battery Designs Can Be Quickly Evaluated
 – Eliminates Iterative Design Process
 – Expands Our Understanding Of How Thermal Batteries Work
• Thin Film Battery Development
 – Potential In Medium & Small Size Munitions
 – Conformal Shape Does Not Require Central Design Space
 – Improved Production Process
 – Improved Performance
 • Faster Rise Times
 • Higher Power & Energy Densities

Affordable -- Advances Technology -- Improves Performance -- Supports Fragile Industrial Base
TCG-V Accomplishments

SNL:
- **Thermal Battery Modeling Effort**
 - High Temp Friction Measurements Were Obtained To Feed Model
 - An Apparatus Was Built To Measure Permeability Of Battery Materials
 - Data Collected Will be Used To Feed Coupled Physics Models
 - A Coupled Thermal Electro-Mechanical Single Cell Model Was Demonstrated
 - Thermal, Electrochemical and Two Phase Porous Flow Physics
 - Models Coupled and Demonstrated
 - TABS v4 Was Demonstrated At Spring Review

- **Thin Film Conformal Battery**
 - Successfully Coated and Produced Thin Film Cathode
 - Overcame Early Lamination and Adhesion Issue
 - Successfully Produced Thin Film Separator
TCG-V Transitions

- **SNL:**
 - Thermal Battery Modeling Effort
 - TABS v4 Was Transitioned To DoD
 - 6-7 Active Licenses Tri-Service Applicability
 - Early Attempts To Transition To Industrial Base Unsuccessful
 » Small Cost For Training & Support Remains Underfunded
 » TCG-V Will Continue To Work With Industry Partners
 - Thin Film Battery Conformal Battery
 - Transitions Planned To Industry Either As Full Battery or Components
 - DoD Transitions Planned
TCG-V Accomplishment / Transition / Collaboration Highlights

- Thermal Battery Modeling
 - High Level of Support
 - Reduces Development Cost
 - Good Transition History
- Thin Film Conformal Battery
 - Potential To Reduce Space Claim
 - Supports Smaller Munitions
 - Leverages TCG-X & JFTP
 - Break-Through Technology
 - Currently Limited To Pressed Pellet

TCG-V
- Re-Visit Un-Confined DoD / DOE Needs
- Align Future Modeling Needs w/User Goals

DISTRIBUTION A: Approved for Public Release. Distribution is unlimited.
• Small DoD Munition Power Sources Required
 • Thermal or Liquid Reserve
• Active Batteries Which Have 20+ Years Shelf Life
 • May Not Be Feasible For Significant Time
• Energy Harvestors
 • Lowest Level Of Interest
 • Used By All Services
 • May Be Too Application Specific
Ordinal Rank Order

<table>
<thead>
<tr>
<th>Ordinal</th>
<th>Technical Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Full Battery Multi-Physics Design Model</td>
</tr>
<tr>
<td>2</td>
<td>Experimental Model Validation</td>
</tr>
<tr>
<td>3</td>
<td>Battery Material Property Discovery</td>
</tr>
<tr>
<td>4</td>
<td>TABS Uncertainty Qualification / Component Margin Studies</td>
</tr>
<tr>
<td>5</td>
<td>Three Dimensional Battery Models</td>
</tr>
<tr>
<td>6</td>
<td>Modeling Batteries Under Environmental Stresses</td>
</tr>
<tr>
<td>7</td>
<td>Incorporate Thin Film Batteries Into TABS Model</td>
</tr>
<tr>
<td>8</td>
<td>Next Generation GUI (Improved User Interface)</td>
</tr>
<tr>
<td>9</td>
<td>Models For Battery Ageing</td>
</tr>
<tr>
<td>10</td>
<td>Abnormal Environmental Modeling (Accidental Fires, etc)</td>
</tr>
<tr>
<td>11</td>
<td>Models For Liquid Reserve Batteries</td>
</tr>
<tr>
<td>12</td>
<td>Models For Primary of Secondary Batteries (Actives, Lithium Ion etc)</td>
</tr>
</tbody>
</table>
TCG-V Technical Gap Survey
Observations & Questions

- Modeling Ranks Closely Spaced
- Variations Due To Process Or Actual Ranked Weight?
- Is This The Correct Order?
- How Would DOE Rank?
- Improved User Interface Scored Low
 - Poor User Interface Directly Linked To Transitions and Use
 - Is It That Users Are Happy With Interface As Is?
- How Does Each Task Weigh To LOE and Cost?
• Aging models for Thermal Batteries and components.
• Alternative Thermal Battery header designs.
• Aging models and studies for COTS (or novel) super-capacitors and components
• Non-destructive surveillance of Reserve Batteries (thermal or liquid)
• Include newer materials in models
Questions?